How to properly cite this product in your work Diagenode strongly recommends using this: Tagmentase (Tn5 transposase) - unloaded (Diagenode Cat# C01070010-10). Click here to copy to clipboard. Using our products in your publication? Let us know! |
Auto-expansion of in vivo HDAd-transduced hematopoietic stem cells by constitutive expression of tHMGA2 Wang H. et al. We developed an in vivo hematopoietic stem cell (HSC) gene therapy approach that does not require cell transplantation. To achieve therapeutically relevant numbers of corrected cells, we constructed HSC-tropic HDAd5/35++ vectors expressing a 3′ UTR truncated HMGA2 gene and a GFP reporter gene. A... |
Detection of genome structural variation in normal cells and tissues by single molecule sequencing Heid J. et al. Detecting somatic mutations in normal cells and tissues is notoriously challenging due to their low abundance, orders of magnitude below the sequencing error rate. While several techniques, such as single-cell and single-molecule sequencing, have been developed to identify somatic mutations, they are insufficient fo... |
Technical considerations for cost-effective transposon directed insertion-site sequencing (TraDIS) Kyono Y. et al. Transposon directed insertion-site sequencing (TraDIS), a variant of transposon insertion sequencing commonly known as Tn-Seq, is a high-throughput assay that defines essential bacterial genes across diverse growth conditions. However, the variability between laboratory environments often requires laborious, time-co... |
Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma Kim IK et al. Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mes... |
CompDuplex: Accurate detection of somatic mutations by duplex-seq with comprehensive genome coverage Muchun Niu et al.
Somatic mutations continuously accumulate in the human genome, posing vulnerabilities towards aging and increased risk of various diseases. However, accurate detection of somatic mutations at the whole genome scale is still challenging. By tagging and independently sequencing the two complementar... |
Integrative functional genomic analyses identify genetic variants influencing skin pigmentation in Africans Yuanqing Feng et al. Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory a... |
A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo Bestas B. et al.
Streptococcus pyogenes Cas9 (SpCas9) and derived enzymes are widely used as genome editors, but their promiscuous nuclease activity often induces undesired mutations and chromosomal rearrangements. Several strategies for mapping off-target effects have emerged, but they suffer from limited sensitivity. To i... |
Combined Analysis of mRNA Expression and Open Chromatin in Microglia Scholz R.et al. The advance of single-cell RNA-sequencing technologies in the past years has enabled unprecedented insights into the complexity and heterogeneity of microglial cell states in the homeostatic and diseased brain. This includes rather complex proteomic, metabolomic, morphological, transcriptomic, and epigenetic adaptat... |
Volumetric imaging of an intact organism by a distributed molecular network Nianchao Qian and Joshua A Weinstein Lymphatic, nervous, and tumoral tissues, among others, exhibit physiology that emerges from three-dimensional interactions between genetically unique cells. A technology capable of volumetrically imaging transcriptomes, genotypes, and morphologies in a single de novo measurement would therefore provide a critical vi... |
Spatial epigenome-transcriptome co-profiling of mammalian tissues. Zhang D. et al. Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relatio... |
Analyzing genomic and epigenetic profiles in single cells by hybridtransposase (scGET-seq). Cittaro D. et al. scGET-seq simultaneously profiles euchromatin and heterochromatin. scGET-seq exploits the concurrent action of transposase Tn5 and its hybrid form TnH, which targets H3K9me3 domains. Here we present a step-by-step protocol to profile single cells by scGET-seq using a 10× Chromium Controller. We describ... |
Imaging Chromatin Accessibility by Assay ofTransposase-Accessible Chromatin with Visualization. Miyanari Yusuke Chromatin accessibility is one of the fundamental structures regulating genome functions including transcription and DNA repair. Recent technological advantages to analyze chromatin accessibility begun to explore the dynamics of local chromatin structures. Here I describe protocols for Assay of Transposase-Accessibl... |
Mouse kidney nuclear isolation and library preparation for single-cell combinatorial indexing RNA sequencing Li Haikuo and Humphreys Benjamin D. Single-cell combinatorial indexing RNA sequencing (sci-RNA-seq3) enables high-throughput single-nucleus transcriptomic profiling of multiple samples in one experiment. Here, we describe an optimized protocol of mouse kidney nuclei isolation and sci-RNA-seq3 library preparation. The use of a dounce tissue homogenizer... |
Optimized single-nucleus transcriptional profiling by combinatorialindexing. Martin Beth K et al. Single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) is a powerful method for recovering gene expression data from an exponentially scalable number of individual cells or nuclei. However, sci-RNA-seq is a complex protocol that has historically exhibited variable performance on different tissues, as well a... |
Spatial profiling of chromatin accessibility in mouse and human tissues Yanxiang Deng et al. Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2,3,4,5, but the ability to capture spatial epigenetic informati... |
Spatially resolved epigenome-transcriptome co-profiling of mammalian tissues at the cellular level Fan Rong et al. Emerging spatial technologies including spatial transcriptomics and spatial epigenomics are becoming powerful tools for profiling cellular states in the tissue context. However, current methods capture only one layer of omics information at a time precluding the possibility to examine the mechanistic relationship ac... |
Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues Liguo Zhang et al. Prolonged detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and recurrence of PCR-positive tests have been widely reported in patients after recovery from COVID-19, but some of these patients do not appear to shed infectious virus. We investigated the possibility that SARS-CoV-2 RNAs can ... |
T-RHEX-RNAseq – A tagmentation-based, rRNA blocked, randomhexamer primed RNAseq method for generating stranded RNAseq librariesdirectly from very low numbers of lysed cells Gustafsson Charlotte et al. Background: RNA sequencing has become the mainstay for studies of gene expression. Still, analysis of rare cells with random hexamer priming – to allow analysis of a broader range of transcripts – remains challenging. Results: We here describe a tagmentation-based, rRNA blocked, random hexamer primed RNA... |