Diagenode Tagmentase is a hyperactive Tn5 transposase with the potential to enhance epigenetic studies. Its ability to cut DNA and insert sequences of interest in one step makes it the perfect companion for Next-Generation Sequencing experiments using powerful technologies such as ATAC-seq, ChIPmentation, CHANGE-seq and other. The enzyme is not loaded with DNA oligos, providing flexibility of application. To ensure optimal results the concentration may be adjusted with Diagenode Tagmentase Dilution Buffer (Cat. No. C01070011), available separately.
We have been using the Hyperactive Tagmentase for 2 years and its performance is outstanding - short operation time and good reproducibility, outmatching the competition. Moreover the interaction with customer representatives is always top-notch - highly efficient and knowledgeable. I can't recommend enough!
Figure 1: Efficient fragmentation of the lambda DNA after incubation with the Tagmentase For fragmentation, 100 ng of DNA from bacteriophage lambda were incubated with diluted Diagenode Tagmentase (Cat. No. C01070010) and Tagmentation buffer (1x) (Cat. No. C01019042) for 7 min at 55°C. The reaction was stopped by addition of SDS (0.2% final concentration). After clean-up using AMPure XP beads (Beckman Coulter) on Diagenode IP-Star robot, the size of the DNA was assessed on Fragment Analyzer (Agilent), using the HS Large Fragment 50kb Kit (Agilent). Profiles show the size of lambda DNA before (A) and after treatment with Tagmentase (B).
Figure 2: Fragmentation efficiency depending on the amount of Tagmentase For fragmentation, 100 ng of DNA from bacteriophage lambda were incubated with Diagenode Tagmentase (Cat. No. C01070010) and Tagmentation buffer (1x) (Cat. No. C01019042) for 7 min at 55°C. The Tagmentase was previously diluted with the Tagmentase Dilution Buffer (Cat. No.) at ¼ and 1/16 dilutions. The reaction was stopped by addition of SDS (0.2% final concentration). After clean-up using AMPure XP beads (Beckman Coulter) on Diagenode IP-Star robot, the size of the DNA was assessed on Fragment Analyzer (Agilent), using the HS Large Fragment 50kb Kit (Agilent). The migration of the samples shows variations of the size distribution according to the amount of Tagmentase used for the reaction.
Diagenode strongly recommends using this: Tagmentase (Tn5 transposase) - unloaded (Diagenode Cat# C01070010-20). Click here to copy to clipboard.
Using our products in your publication? Let us know!
Imaging Chromatin Accessibility by Assay ofTransposase-Accessible Chromatin with Visualization. Miyanari Yusuke Chromatin accessibility is one of the fundamental structures regulating genome functions including transcription and DNA repair. Recent technological advantages to analyze chromatin accessibility begun to explore the dynamics of local chromatin structures. Here I describe protocols for Assay of Transposase-Accessibl...
Mouse kidney nuclear isolation and library preparation for single-cellcombinatorial indexing RNA sequencing Li Haikuo and Humphreys Benjamin D. Single-cell combinatorial indexing RNA sequencing (sci-RNA-seq3) enables high-throughput single-nucleus transcriptomic profiling of multiple samples in one experiment. Here, we describe an optimized protocol of mouse kidney nuclei isolation and sci-RNA-seq3 library preparation. The use of a dounce tissue homogenizer...
Optimized single-nucleus transcriptional profiling by combinatorialindexing. Martin Beth K et al. Single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) is a powerful method for recovering gene expression data from an exponentially scalable number of individual cells or nuclei. However, sci-RNA-seq is a complex protocol that has historically exhibited variable performance on different tissues, as well a...
Spatial profiling of chromatin accessibility in mouse and human tissues Yanxiang Deng et al. Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2,3,4,5, but the ability to capture spatial epigenetic informati...
Spatially resolved epigenome-transcriptome co-profiling of mammalian tissues at the cellular level Fan Rong et al. Emerging spatial technologies including spatial transcriptomics and spatial epigenomics are becoming powerful tools for profiling cellular states in the tissue context. However, current methods capture only one layer of omics information at a time precluding the possibility to examine the mechanistic relationship ac...