H3K4me1 polyclonal antibody - Classic

Catalog Number
50 µg/18 µl
  Bulk order

Polyclonal antibody raised in rabbit against histone H3 containing the monomethylated lysine 4 (H3K4me1), using a KLH-conjugated synthetic peptide.

Concentration2.9 µg/µl
Species reactivityHuman, mouse
PurityAffinity purified
PrecautionsThis product is for research use only. Not for use in diagnostic or therapeutic procedures.
Applications Suggested dilution References
ChIP * 1-2 μg/IP Fig 1, 2
ELISA 1:500 Fig 3
Dot Blotting 1:10,000 Fig 4
Western Blotting 1:500 Fig 5
Immunofluorescence 1:500 Fig 6
* Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 1-5 μg per IP.
  • Validation Data


    Figure 1. ChIP results obtained with the Diagenode antibody directed against H3K4me1
    ChIP was performed with the Diagenode antibody against H3K4me1 (Cat. No. C15410037) on sheared chromatin from 1 million HeLaS3 cells using the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024). A titration of the antibody consisting of 1, 2, 5 and 10 μg per ChIP experiment was analysed. IgG (2 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers for a region surrounding the ACTB and GAS2L1 genes, used as positive controls, and for the promoters of the GAPDH and EIF4A2 genes, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis).

    ChIP-seq figure A

    ChIP-seq figure B

    ChIP-seq figure C

    ChIP-seq figure D

    Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H3K4me1
    ChIP was performed as described above with 1 μg of the Diagenode antibody against H3K4me1 (Cat. No. C15410037). The IP’d DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2A and B show the enrichment in chromosomal regions surrounding the ACTB and GAS2L1 positive control genes. The position of the amplicon used in the qPCR validation is indicated by an arrow. Figure 2C and D show the H3K4me1 signal in two 1 Mb regions of chromosome 5 and X, respectively.


    Figure 3. Determination of the titer
    To determine the titer, an ELISA was performed using a serial dilution of the Diagenode antibody directed against H3K4me1 (Cat. No. C15410037) in antigen coated wells. The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:20,100.

    Dot blot

    Figure 4. Cross reactivity tests using the Diagenode antibody directed against H3K4me1
    A Dot Blot analysis was performed to test the cross reactivity of the Diagenode antibody against H3K4me1 (Cat. No. C15410037) with peptides containing other modifications or unmodified sequences of histone H3 and H4. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:10,000. Figure 4 shows a high specificity of the antibody for the modification of interest.

    Western blot

    Figure 5. Western blot analysis using the Diagenode antibody directed against H3K4me1
    Western blot was performed on whole cell (25 μg, lane 1) and histone extracts (15 μg, lane 2) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the Diagenode antibody against H3K4me1 (Cat. No. C15410037). The antibody was diluted 1:500 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is shown on the right, the marker (in kDa) is shown on the left.


    Figure 6. Immunofluorescence using the Diagenode antibody directed against H3K4me1
    HeLa cells were stained with the Diagenode antibody against H3K4me1 (cat. C15410037) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H3K4me1 antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right.

  • Applications
    Enzyme-linked immunosorbent assay. Read more
    Dot blotting Read more
    Western blot : The quality of antibodies used in this technique is crucial for correct and specific protein identification. Diagenode offers huge selection of highly sensitive and specific western blot-validated antibodies. Learn more about: Load... Read more
    ChIP-seq (ab)
    Read more
    ChIP-qPCR (ab)
    Read more
  • Documents
    Datasheet H3K4me1 C15410037 DATASHEET
    Polyclonal antibody raised in rabbit against histone H3 containing the monomethylated lysine 4 (H...
    Epigenetic Antibodies Brochure BROCHURE
    More than in any other immuoprecipitation assays, quality antibodies are critical tools in many e...
    Antibodies you can trust POSTER
    Epigenetic research tools have evolved over time from endpoint PCR to qPCR to the analyses of lar...
  • Publications

    How to properly cite this product in your work

    Diagenode strongly recommends using this: H3K4me1 polyclonal antibody - Classic (Diagenode Cat# C15410037 Lot# A1657D). Click here to copy to clipboard.

    Using our products in your publication? Let us know!

    Enhancer decommissioning by Snail1-induced competitive displacement of TCF7L2 and down-regulation of transcriptional activators results in EPHB2 silencing
    Schnappauf O et al.
    Transcriptional silencing is a major cause for the inactivation of tumor suppressor genes, however, the underlying mechanisms are only poorly understood. The EPHB2 gene encodes a receptor tyrosine kinase that controls epithelial cell migration and allocation in intestinal crypts. Through its ability to restrict cell...

    cChIP-seq: a robust small-scale method for investigation of histone modifications
    Valensisi C et al.
    Background ChIP-seq is highly utilized for mapping histone modifications that are informative about gene regulation and genome annotations. For example, applying ChIP-seq to histone modifications such as H3K4me1 has facilitated generating epigenomic maps of putative enhancers. This powerful technology, however, i...

    C/EBPα Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis
    van Oevelen C, Collombet S, Vicent G, Hoogenkamp M, Lepoivre C, Badeaux A, Bussmann L, Sardina JL, Thieffry D, Beato M, Shi Y, Bonifer C, Graf T
    Highlights C/EBPα activates two classes of prospective myeloid enhancers in B cells Pre-existing enhancers are bound by PU.1 and become hyper-activated by C/EBPα C/EBPα acts as a pioneer factor with delayed kinetics on de novo enhancers The two types of enhancers direct myeloid cell fat...

    SNAIL1 combines competitive displacement of ASCL2 and epigenetic mechanisms to rapidly silence the EPHB3 tumor suppressor in colorectal cancer.
    Rönsch K, Jägle S, Rose K, Seidl M, Baumgartner F, Freihen V, Yousaf A, Metzger E, Lassmann S, Schüle R, Zeiser R, Michoel T, Hecht A
    EPHB3 is a critical cellular guidance factor in the intestinal epithelium and an important tumor suppressor in colorectal cancer (CRC) whose expression is frequently lost at the adenoma-carcinoma transition when tumor cells become invasive. The molecular mechanisms underlying EPHB3 silencing are incompletely underst...

    Interrogation of allelic chromatin states in human cells by high-density ChIP-genotyping.
    Light N, Adoue V, Ge B, Chen SH, Kwan T, Pastinen T
    Allele-specific (AS) assessment of chromatin has the potential to elucidate specific cis-regulatory mechanisms, which are predicted to underlie the majority of the known genetic associations to complex disease. However, development of chromatin landscapes at allelic resolution has been challenging since sites of var...

    Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer
    Zecchini V, Madhu B, Russell R, Pértega-Gomes N, Warren A, Gaude E, Borlido J, Stark R, Ireland-Zecchini H, Rao R, Scott H, Boren J, Massie C, Asim M, Brindle K, Griffiths J, Frezza C, Neal DE, Mills IG
    Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic con...

    A novel microscopy-based high-throughput screening method to identify proteins that regulate global histone modification levels.
    Baas R, Lelieveld D, van Teeffelen H, Lijnzaad P, Castelijns B, van Schaik FM, Vermeulen M, Egan DA, Timmers HT, de Graaf P
    Posttranslational modifications of histones play an important role in the regulation of gene expression and chromatin structure in eukaryotes. The balance between chromatin factors depositing (writers) and removing (erasers) histone marks regulates the steady-state levels of chromatin modifications. Here we describe...

    An In-Depth Characterization of the Major Psoriasis Susceptibility Locus Identifies Candidate Susceptibility Alleles within an HLA-C Enhancer Element.
    Clop A, Bertoni A, Spain SL, Simpson MA, Pullabhatla V, Tonda R, Hundhausen C, Di Meglio P, De Jong P, Hayday AC, Nestle FO, Barker JN, Bell RJ, Capon F, Trembath RC
    Psoriasis is an immune-mediated skin disorder that is inherited as a complex genetic trait. Although genome-wide association scans (GWAS) have identified 36 disease susceptibility regions, more than 50% of the genetic variance can be attributed to a single Major Histocompatibility Complex (MHC) locus, known as PSORS...

    Disease-Related Growth Factor and Embryonic Signaling Pathways Modulate an Enhancer of TCF21 Expression at the 6q23.2 Coronary Heart Disease Locus.
    Miller CL, Anderson DR, Kundu RK, Raiesdana A, Nürnberg ST, Diaz R, Cheng K, Leeper NJ, Chen CH, Chang IS, Schadt EE, Hsiung CA, Assimes TL, Quertermous T
    Coronary heart disease (CHD) is the leading cause of mortality in both developed and developing countries worldwide. Genome-wide association studies (GWAS) have now identified 46 independent susceptibility loci for CHD, however, the biological and disease-relevant mechanisms for these associations remain elusive. Th...

    Balancing of histone H3K4 methylation states by the Kdm5c/SMCX histone demethylase modulates promoter and enhancer function.
    Outchkourov NS, Muiño JM, Kaufmann K, van Ijcken WF, Groot Koerkamp MJ, van Leenen D, de Graaf P, Holstege FC, Grosveld FG, Timmers HT
    The functional organization of eukaryotic genomes correlates with specific patterns of histone methylations. Regulatory regions in genomes such as enhancers and promoters differ in their extent of methylation of histone H3 at lysine-4 (H3K4), but it is largely unknown how the different methylation states are specifi...

    Characterization of the contradictory chromatin signatures at the 3' exons of zinc finger genes.
    Blahnik KR, Dou L, Echipare L, Iyengar S, O'Geen H, Sanchez E, Zhao Y, Marra MA, Hirst M, Costello JF, Korf I, Farnham PJ
    The H3K9me3 histone modification is often found at promoter regions, where it functions to repress transcription. However, we have previously shown that 3' exons of zinc finger genes (ZNFs) are marked by high levels of H3K9me3. We have now further investigated this unusual location for H3K9me3 in ZNF genes. Neither ...

    Using ChIP-Seq Technology to Generate High-Resolution Profiles of Histone Modifications
    O’Geen H, Echipare L, Farnham PJ
    The dynamic modification of DNA and histones plays a key role in transcriptional regulation through - altering the packaging of DNA and modifying the nucleosome surface. These chromatin states, also referred to as the epigenome, are distinctive for different tissues, developmental stages, and disease states and can ...

  • Related products


  • Workshop on Chromatin Proteomics
    Crete, Greece
    Oct 3-Oct 8, 2016
  • 2nd Annual Next Generation Sequencing Congress
    Boston, USA
    Oct 3-Oct 4, 2016
 See all events

Twitter feed


 See all news