Detecting small cell transformation in patients with advanced EGFR mutant lung adenocarcinoma through epigenomic cfDNA profiling

Talal El Zarif et al.

Purpose: Histologic transformation to small cell lung cancer (SCLC) is a mechanism of treatment resistance in patients with advanced oncogene-driven lung adenocarcinoma (LUAD) that currently requires histologic review for diagnosis. Herein, we sought to develop an epigenomic cell-free (cf)DNA-based approach to non-invasively detect small cell transformation in patients with EGFR mutant (EGFRm) LUAD. Experimental Design: To characterize the epigenomic landscape of transformed (t)SCLC relative to LUAD and de novo SCLC, we performed chromatin immunoprecipitation sequencing (ChIP-seq) to profile the histone modifications H3K27ac, H3K4me3, and H3K27me3, methylated DNA immunoprecipitation sequencing (MeDIP-seq), assay for transposase-accessible chromatin sequencing (ATAC-seq), and RNA sequencing on 26 lung cancer patient-derived xenograft (PDX) tumors. We then generated and analyzed H3K27ac ChIP-seq, MeDIP-seq, and whole genome sequencing cfDNA data from 1 ml aliquots of plasma from patients with EGFRm LUAD with or without tSCLC. Results: Analysis of 126 epigenomic libraries from the lung cancer PDXs revealed widespread epigenomic reprogramming between LUAD and tSCLC, with a large number of differential H3K27ac (n=24,424), DNA methylation (n=3,298), and chromatin accessibility (n=16,352) sites between the two histologies. Tumor-informed analysis of each of these three epigenomic features in cfDNA resulted in accurate non-invasive discrimination between patients with EGFRm LUAD versus tSCLC (AUROC=0.82-0.87). A multi-analyte cfDNA-based classifier integrating these three epigenomic features discriminated between EGFRm LUAD versus tSCLC with an AUROC of 0.94. Conclusions: These data demonstrate the feasibility of detecting small cell transformation in patients with EGFRm LUAD through epigenomic cfDNA profiling of 1 ml of patient plasma.

MagMeDIP kit
IPure kit

Share this article

June, 2024


Products used in this publication

  • MagMeDIP qPCR Kit box
    MagMeDIP Kit
  • Methylation kit icon
    DNA methylation control package
  • default alt
    IPure kit v2


  • FASEB Biological Methylation: Fundamental Mechanisms
    Porto, Portugal
    Jul 28-Aug 1, 2024
 See all events


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy