BET protein inhibition sensitizes glioblastoma cells to temozolomidetreatment by attenuating MGMT expression

Tancredi A. et al.

Bromodomain and extra-terminal tail (BET) proteins have been identified as potential epigenetic targets in cancer, including glioblastoma. These epigenetic modifiers link the histone code to gene transcription that can be disrupted with small molecule BET inhibitors (BETi). With the aim of developing rational combination treatments for glioblastoma, we analyzed BETi-induced differential gene expression in glioblastoma derived-spheres, and identified 6 distinct response patterns. To uncover emerging actionable vulnerabilities that can be targeted with a second drug, we extracted the 169 significantly disturbed DNA Damage Response genes and inspected their response pattern. The most prominent candidate with consistent downregulation, was the O-6-methylguanine-DNA methyltransferase (MGMT) gene, a known resistance factor for alkylating agent therapy in glioblastoma. BETi not only reduced MGMT expression in GBM cells, but also inhibited its induction, typically observed upon temozolomide treatment. To determine the potential clinical relevance, we evaluated the specificity of the effect on MGMT expression and MGMT mediated treatment resistance to temozolomide. BETi-mediated attenuation of MGMT expression was associated with reduction of BRD4- and Pol II-binding at the MGMT promoter. On the functional level, we demonstrated that ectopic expression of MGMT under an unrelated promoter was not affected by BETi, while under the same conditions, pharmacologic inhibition of MGMT restored the sensitivity to temozolomide, reflected in an increased level of g-H2AX, a proxy for DNA double-strand breaks. Importantly, expression of MSH6 and MSH2, which are required for sensitivity to unrepaired O6-methylGuanin-lesions, was only briefly affected by BETi. Taken together, the addition of BET-inhibitors to the current standard of care, comprising temozolomide treatment, may sensitize the 50\% of patients whose glioblastoma exert an unmethylated MGMT promoter.

iDeal ChIP-seq Kit for Transcription Factors

Share this article


Products used in this publication

  • ChIP kit icon
    iDeal ChIP-seq kit for Transcription Factors
  • cut and tag antibody icon
    CTCF Antibody
  • Mouse IgG
    Rabbit IgG
  • some alt
    1.5 ml Bioruptor® Pico Microtubes with Caps
  • Bioruptor Pico
    Bioruptor® Pico sonication device


  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
 See all events


 See all news

The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics