Diagenode

Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation


Kieffer-Kwon K.R. et al.

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.

Tags
Antibody

Share this article

Published
August, 2017

Source

Products used in this publication

  • Antibody ChIP-seq grade icon
    C15410212
    H2BK12ac polyclonal antibody - Classic
  • Antibody ChIP-seq grade icon
    C15410139
    H3K18ac polyclonal antibody - Classic
  • Antibody ChIP-seq grade icon
    C15410082
    H3K79me1 polyclonal antibody - Classic
  • Antibody ChIP-seq grade icon
    C15410207
    H4K20me3 polyclonal antibody - Premium

         Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics