Diagenode

RAD51 protects human cells from transcription-replication conflicts.


Bhowmick R. et al.

Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are characterized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to cancer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase transcription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.

Tags
iDeal ChIP-qPCR

Share this article

Published
August, 2022

Source

Products used in this publication

  • ChIP kit icon
    C01010180
    iDeal ChIP-qPCR Kit
  • Bioruptor Pico
    B01080010
    Bioruptor® Pico sonication device
  • Bioruptor pico next gen sequencing
    B01060010
    Bioruptor® Pico sonication device

Events

  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics