Diagenode

Rapid and ongoing evolution of repetitive sequence structures in humancentromeres.


Suzuki Y. et al.

Our understanding of centromere sequence variation across human populations is limited by its extremely long nested repeat structures called higher-order repeats that are challenging to sequence. Here, we analyzed chromosomes 11, 17, and X using long-read sequencing data for 36 individuals from diverse populations including a Han Chinese trio and 21 Japanese. We revealed substantial structural diversity with many previously unidentified variant higher-order repeats specific to individuals characterizing rapid, haplotype-specific evolution of human centromeric arrays, while frequent single-nucleotide variants are largely conserved. We found a characteristic pattern shared among prevalent variants in human and chimpanzee. Our findings pave the way for studying sequence evolution in human and primate centromeres.

Tags
Megaruptor

Share this article

Published
December, 2020

Source

Products used in this publication

  •  DNA Shearing, RNA shearing and Chromatin shearing
    B06010002
    Megaruptor® 2
  • Megaruptor 3
    B06010003
    Megaruptor® 3

Events

  • Virtual ChIP workshop - January 18-19, 2022 or January 25-26, 2022
    Diagenode
    Jan 18-Jan 26, 2022
  • Virtual DNA Methylation - January 18-19, 2022 or January 25-26, 2022
    Diagenode
    Jan 18-Jan 26, 2022
  • Lausanne Genomics Days 2022
    Lausanne, Switzerland
    Feb 14-Feb 15, 2022
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics