Diagenode

Therapy-induced DNA methylation inactivates MCT1 and renders tumor cells vulnerable to MCT4 inhibition


Catherine Vander Linden, Cyril Corbet, Estelle Bastien, Ruben Martherus, Céline Guilbaud, Laurenne Petit, Loris Wauthier, Axelle Loriot, Charles De Smet, Olivier Feron

Metabolic plasticity in cancer cells makes use of metabolism-targeting agents very challenging. Drug-induced metabolic rewiring may, however, uncover vulnerabilities that can be exploited. We report that resistance to glycolysis inhibitor 3-bromopyruvate (3-BrPA) arises from DNA methylation in treated cancer cells and subsequent silencing of the monocarboxylate transporter MCT1. We observe that, unexpectedly, 3-BrPA-resistant cancer cells mostly rely on glycolysis to sustain their growth, with MCT4 as an essential player to support lactate flux. This shift makes cancer cells particularly suited to adapt to hypoxic conditions and resist OXPHOS inhibitors and anti-proliferative chemotherapy. In contrast, blockade of MCT4 activity in 3-BrPA-exposed cancer cells with diclofenac or genetic knockout, inhibits growth of derived spheroids and tumors in mice. This study supports a potential mode of collateral lethality according to which metabolic adaptation of tumor cells to a first-line therapy makes them more responsive to a second-line treatment.

Tags
DNA Methylation
Methylated DNA immunoprecipitation
MagMeDIP qPCR Kit

Share this article

Published
June, 2021

Source

Products used in this publication

  • MagMeDIP qPCR Kit box
    C02010021
    MagMeDIP Kit

Events

  • Long-Read Sequencing Meeting 2024
    Uppsala, Sweden
    Oct 21-Oct 23, 2024
  • NextGen Omics 2024
    London, UK
    Oct 23-Oct 25, 2024
  • FEBS 2024
    Budapest, Hungary
    Oct 28-Oct 31, 2024
  • 5th Danube Conference on Epigenetics
    Budapest, Hungary
    Oct 28-Oct 31, 2024
 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy