Diagenode

Life-Long AAV-Mediated CRISPR Genome Editing in Dystrophic Heart Improves Cardiomyopathy without Causing Serious Lesions in mdx Mice.


Xu L, Lau YS, Gao Y, Li H, Han R

Previous studies from others and us have demonstrated that CRISPR genome editing could offer a promising therapeutic strategy to restore dystrophin expression and function in the skeletal muscle and heart of Duchenne muscular dystrophy (DMD) mouse models. However, the long-term efficacy and safety of CRISPR genome-editing therapy for DMD has not been well established. We packaged both SaCas9 and guide RNA (gRNA) together into one AAVrh.74 vector, injected two such vectors (targeting intron 20 and intron 23, respectively) into mdx pups at day 3 and evaluated the mice at 19 months. We found that AAVrh.74-mediated life-long CRISPR genome editing in mdx mice restored dystrophin expression and improved cardiac function without inducing serious adverse effects. PCR analysis and targeted deep sequencing showed that the DSBs were mainly repaired by the precise ligation of the two cut sites. Serological and histological examination of major vital organs did not reveal any signs of tumor development or other deleterious defects arising from CRISPR genome editing. These results support that in vivo CRISPR genome editing could be developed as a safe therapeutic treatment for DMD and potentially other diseases.

Tags
Antibody

Share this article

Published
May, 2019

Source

Products used in this publication

  • Antibody cas9 icon
    C15200230-100
    S. aureus CRISPR/Cas9 monoclonal antibody

         Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics