Diagenode

Whsc1 links pluripotency exit with mesendoderm specification.


Tian TV, Di Stefano B, Stik G, Vila-Casadesús M, Sardina JL, Vidal E, Dasti A, Segura-Morales C, De Andrés-Aguayo L, Gómez A, Goldmann J, Jaenisch R, Graf T

How pluripotent stem cells differentiate into the main germ layers is a key question of developmental biology. Here, we show that the chromatin-related factor Whsc1 (also known as Nsd2 and MMSET) has a dual role in pluripotency exit and germ layer specification of embryonic stem cells. On induction of differentiation, a proportion of Whsc1-depleted embryonic stem cells remain entrapped in a pluripotent state and fail to form mesendoderm, although they are still capable of generating neuroectoderm. These functions of Whsc1 are independent of its methyltransferase activity. Whsc1 binds to enhancers of the mesendodermal regulators Gata4, T (Brachyury), Gata6 and Foxa2, together with Brd4, and activates the expression of these genes. Depleting each of these regulators also delays pluripotency exit, suggesting that they mediate the effects observed with Whsc1. Our data indicate that Whsc1 links silencing of the pluripotency regulatory network with activation of mesendoderm lineages.

Tags
True MicroChIP kit

Share this article

Published
July, 2019

Source

Products used in this publication

  • ChIP kit icon
    C01010130
    True MicroChIP Kit
  • default alt
    C03040001
    MicroChIP DiaPure columns

Events

  • A Century of Genetics
    Edinburgh
    Nov 13-Nov 15, 2019
  • EMEA User Group Meeting - PacBio
    Barceló Hotel, Milan, Italy
    Nov 14-Nov 15, 2019
 See all events

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics