Diagenode

Extensive Recovery of Embryonic Enhancer and Gene Memory Stored in Hypomethylated Enhancer DNA.


Jadhav U, Cavazza A, Banerjee KK, Xie H, O'Neill NK, Saenz-Vash V, Herbert Z, Madha S, Orkin SH, Zhai H, Shivdasani RA

Developing and adult tissues use different cis-regulatory elements. Although DNA at some decommissioned embryonic enhancers is hypomethylated in adult cells, it is unknown whether this putative epigenetic memory is complete and recoverable. We find that, in adult mouse cells, hypomethylated CpG dinucleotides preserve a nearly complete archive of tissue-specific developmental enhancers. Sites that carry the active histone mark H3K4me1, and are therefore considered "primed," are mainly cis elements that act late in organogenesis. In contrast, sites decommissioned early in development retain hypomethylated DNA as a singular property. In adult intestinal and blood cells, sustained absence of polycomb repressive complex 2 indirectly reactivates most-and only-hypomethylated developmental enhancers. Embryonic and fetal transcriptional programs re-emerge as a result, in reverse chronology to cis element inactivation during development. Thus, hypomethylated DNA in adult cells preserves a "fossil record" of tissue-specific developmental enhancers, stably marking decommissioned sites and enabling recovery of this epigenetic memory.

Tags
Antibody

Share this article

Published
March, 2019

Source

Products used in this publication

  • Antibody ChIP-seq grade icon
    C15410194
    H3K4me1 polyclonal antibody - Premium
  • Antibody ChIP-seq grade icon
    C15410003-50
    H3K4me3 polyclonal antibody - Premium

Events

  • ASHG
    Houston, TX
    Oct 15-Oct 19, 2019
  • ddd
    dd
    Oct 18-Oct 26, 2019
  • Neuroscience 2019
    Chicago, IL
    Oct 19-Oct 23, 2019
 See all events

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics