Diagenode

Corticosteroid receptors adopt distinct cyclical transcriptional signatures


Florian Le Billan, Larbi Amazit, Kevin Bleakley, Qiong-Yao Xue, Eric Pussard, Christophe Lhadj, Peter Kolkhof, Say Viengchareun, Jérôme Fagart, and Marc Lombès

Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 (PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR–GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.

Tags
iDeal ChIP-seq Kit for Transcription Factors

Share this article

Published
May, 2018

Source

Products used in this publication

  • ChIP kit icon
    C01010055
    iDeal ChIP-seq kit for Transcription Factors
  • Bioruptor-pico-next-gen-sequencing
    B01060010
    Bioruptor® Pico sonication device

         Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics