Diagenode

Embryonic transcription is controlled by maternally defined chromatin state


Hontelez S et al.

Histone-modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origins of the epigenome during embryonic development. Here we generate a comprehensive set of epigenome reference maps, which we use to determine the extent to which maternal factors shape chromatin state in Xenopus embryos. Using α-amanitin to inhibit zygotic transcription, we find that the majority of H3K4me3- and H3K27me3-enriched regions form a maternally defined epigenetic regulatory space with an underlying logic of hypomethylated islands. This maternal regulatory space extends to a substantial proportion of neurula stage-activated promoters. In contrast, p300 recruitment to distal regulatory regions requires embryonic transcription at most loci. The results show that H3K4me3 and H3K27me3 are part of a regulatory space that exerts an extended maternal control well into post-gastrulation development, and highlight the combinatorial action of maternal and zygotic factors through proximal and distal regulatory sequences.

Tags
Antibody

Share this article

Published
December, 2015

Source

Related product

  • RFX5-polyclonal-antibody-diagenode
    C15410060
    H3K9me2 polyclonal antibody - Classic
  • Histone-Deacetylase-polyclonal-antibody-diagenode
    C15200004
    Pol II monoclonal antibody - Classic

Events

 See all events

Twitter feed

News

 See all news