Diagenode

A method for measuring fatty acid oxidation in C. elegans


Elle IC, Rødkær SV, Fredens J, Færgeman NJ

The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured by scintillation counting. Treating animals with sodium azide, an inhibitor of the electron transport chain, reduced 3H2O production to approximately 15%, while boiling of animals prior to assay completely blocked the production of labeled water. We demonstrate that worms fed different bacterial strains exhibit different fatty acid oxidation rates. We show that starvation results in increased fatty acid oxidation, which is independent of the transcription factor NHR-49. On the contrary, fatty acid oxidation is reduced to approximately 70% in animals lacking the worm homolog of the insulin receptor, DAF-2. Hence, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans.

Tags
Bioruptor
Cell Lysis

Share this article

Source

Events

 See all events

Twitter feed

News

 See all news