Control of the differentiation of regulatory T cells and T(H)17 cells by the DNA-binding inhibitor Id3.

Maruyama T, Li J, Vaque JP, Konkel JE, Wang W, Zhang B, Zhang P, Zamarron BF, Yu D, Wu Y, Zhuang Y, Gutkind JS, Chen W

The molecular mechanisms that direct transcription of the gene encoding the transcription factor Foxp3 in CD4(+) T cells remain ill-defined. We show here that deletion of the DNA-binding inhibitor Id3 resulted in the defective generation of Foxp3(+) regulatory T cells (T(reg) cells). We identify two transforming growth factor-β1 (TGF-β1)-dependent mechanisms that were vital for activation of Foxp3 transcription and were defective in Id3(-/-) CD4(+) T cells. Enhanced binding of the transcription factor E2A to the Foxp3 promoter promoted Foxp3 transcription. Id3 was required for relief of inhibition by the transcription factor GATA-3 at the Foxp3 promoter. Furthermore, Id3(-/-) T cells showed greater differentiation into the T(H)17 subset of helper T cells in vitro and in a mouse asthma model. Therefore, a network of factors acts in a TGF-β-dependent manner to control Foxp3 expression and inhibit the development of T(H)17 cells.


Share this article

December, 2010


Products used in this publication

  • ChIP-seq Grade
    TBP Antibody


  • EpiPlant 2024
    Clermont-Ferrand, France
    Jul 10-Jul 12, 2024
 See all events


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy