Diagenode

Dataset integration identifies transcriptional regulation of microRNA genes by PPARγ in differentiating mouse 3T3-L1 adipocytes.


John E, Wienecke-Baldacchino A, Liivrand M, Heinäniemi M, Carlberg C, Sinkkonen L

Peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor in mammalian adipogenesis. Genome-wide approaches have identified thousands of PPARγ binding sites in mouse adipocytes and PPARγ upregulates hundreds of protein-coding genes during adipogenesis. However, no microRNA (miRNA) genes have been identified as primary PPARγ-targets. By integration of four separate datasets of genome-wide PPARγ binding sites in 3T3-L1 adipocytes we identified 98 miRNA clusters with PPARγ binding within 50 kb from miRNA transcription start sites. Nineteen mature miRNAs were upregulated ≥2-fold during adipogenesis and for six of these miRNA loci the PPARγ binding sites were confirmed by at least three datasets. The upregulation of five miRNA genes miR-103-1 (host gene Pank3), miR-148b (Copz1), miR-182/96/183, miR-205 and miR-378 (Ppargc1b) followed that of Pparg. The PPARγ-dependence of four of these miRNA loci was demonstrated by PPARγ knock-down and the loci of miR-103-1 (Pank3), miR-205 and miR-378 (Ppargc1b) were also responsive to the PPARγ ligand rosiglitazone. Finally, chromatin immunoprecipitation analysis validated in silico predicted PPARγ binding sites at all three loci and H3K27 acetylation was analyzed to confirm the activity of these enhancers. In conclusion, we identified 22 putative PPARγ target miRNA genes, showed the PPARγ dependence of four of these genes and demonstrated three as direct PPARγ target genes in mouse adipogenesis.

Tags
Chromatin Shearing
ChIP-qPCR

Share this article

Published
February, 2012

Source

Events

 See all events

Twitter feed

News

 See all news