Impact of the DNA methyltransferases expression on the methylation status of apoptosis-associated genes in glioblastoma multiforme.

Hervouet E, Vallette FM, Cartron PF

Disruption of apoptosis is considered as an important factor aiding tumorigenesis, and aberrant DNA methylation of apoptosis-associated genes could be an important and significant mechanism through which tumor cells avoid apoptosis. However, little is known about (1) the impact of methylation status of apoptosis-associated genes on the presence of apoptosis evasion phenotype in glioma; and (2) the molecular mechanism governing the aberrant methylation of apoptosis-associated genes in glioma. By analyzing human glioma biopsies, we first show that low level of apoptosis in tumor is correlated with aberrant methylation of the bcl-2, bax and XAF-1 genes, but not with the aberrant methylation of the bcl-w, survivin, TMS1, caspase-8 and HRK genes. Our work also indicates that the expression levels of DNA methyltransferase 1 (Dnmt1), Dnmt3b and Dnmt1/Dnmt3a coregulate the methylation status of survivin, TMS1 and caspase-8, whereas no correlation was observed between the expression level of Dnmts and the methylation status of the bcl-w, bcl-2, bax, XAF-1 and HRK genes. Thus, these results indicate that the epigenetic regulation of some apoptosis-regulated genes could dictate whether glioma harbors the apoptosis evasion phenotype, and provide some bases to the identification of the methylation machineries of apoptosis-associated genes for which the Dnmt expression acts as a limiting factor.

MeDIP kit

Share this article

January, 2010



 See all events


 See all news

The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics