Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells.

Weishaupt H, Sigvardsson M, Attema JL

Heritable epigenetic signatures are proposed to serve as an important regulatory mechanism in lineage fate determination. To investigate this, we profiled chromatin modifications in murine hematopoietic stem cells, lineage-restricted progenitors, and CD4(+) T cells using modified genome-scale mini-chromatin immunoprecipitation technology. We show that genes involved in mature hematopoietic cell function associate with distinct chromatin states in stem and progenitor cells, before their activation or silencing upon cellular maturation. Many lineage-restricted promoters are associated with bivalent histone methylation and highly combinatorial histone modification patterns, which may determine their selective priming of gene expression during lineage commitment. These bivalent chromatin states are conserved in mammalian evolution, with a particular overrepresentation of promoters encoding key regulators of hematopoiesis. After differentiation into progenitors and T cells, activating histone modifications persist at transcriptionally repressed promoters, suggesting that these transcriptional programs might be reactivated after lineage restriction. Collectively, our data reveal the epigenetic framework that underlies the cell fate options of hematopoietic stem cells.

Chromatin Shearing

Share this article

January, 2010



 See all events

Twitter feed


 See all news