Diagenode

CRISPR-Cas9 Structures and Mechanisms


Fuguo Jiang and Jennifer A. Doudna

Many bacterial CRISPR-Cas systems employ the dual-RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, while subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9–DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single guide RNA (sgRNA) mimicking the natural dual-tracrRNA-crRNA structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, PAM requirements, and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.

Tags
Article alert

Share this article

Published
May, 2017

Source

Events

 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics