Diagenode

Dependence of radiation-induced H2AX phosphorylation on histone methylation: evidence from the chromatin immunoprecipitation assay.


Sak A, Kübler D, Bannik K, Groneberg M, Stuschke M

PURPOSE: To evaluate ionizing radiation (IR)-induced DNA damage response within euchromatic and heterochromatic regions. MATERIAL AND METHODS: Chromatin immunoprecipitation (ChIP) and immunofluorescence analysis were used to explore the distribution of phosphorylated H2AX (γH2AX). RESULTS: ChlP experiments after IR at 30 and 60 Gy showed by a factor of 1.28 (1.08-1.53, 95% confidence interval) higher γH2AX signal at 45 min after IR in histone H3 trimethylated lysine 4 (H3K4me3) compared to lysine 9 (H3K9me3) enriched chromatin fragments. Halving the radiation dose from 60-30 Gy led to a reduction of γH2AX signal by a factor of 0.49 (0.37-0.64), independent of the chromatin region. Repair incubation for 240 min led to a decrease of the γH2AX signal by a factor of 0.55 (0.45-0.67) in both regions. The fraction of H3K9me3 was determined with immunofluorescent microscopy to be 30.5 ± 3.8% of the whole chromatin. The fraction of γH2AX foci within H3K9me3 regions was shown to be 12.9 ± 0.4% and 13.9 ± 0.6% at 45 min and 4 h after 0.5 Gy, respectively, and thus by a factor of about 2.2 lower than the fraction expected from an isotropic distribution. CONCLUSION: These data strengthen the dependence of IR-induced DNA damage response on the chromatin region.

Share this article

Published
April, 2015

Source

Events

  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
  • London Calling 2024
    London, UK
    May 21-May 24, 2024
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics