Diagenode

Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF.


Tamm C, Böwer N, Annerén C

The cytoplasmic tyrosine kinase Yes has previously been shown to have an important role in maintaining mouse and human embryonic stem (ES) self-renewal through an unknown pathway downstream of leukemia inhibitory factor (LIF) and one or more factors in serum. Here, we show that TEAD2 and its transcriptional co-activator, the Yes-associated protein YAP, co-operate in a signaling pathway downstream of Yes. We show that YAP, TEAD2 and Yes are highly expressed in self-renewing ES cells, are activated by LIF and serum, and are downregulated when cells are induced to differentiate. We also demonstrate that kinase-active Yes binds and phosphorylates YAP, and activates YAP-TEAD2-dependent transcription. We found that TEAD2 associates directly with the Oct-3/4 promoter. Moreover, activation of the Yes pathway induced activity of the Oct-3/4 and Nanog promoters, whereas suppression of this pathway inhibited promoter activity. Nanog, in turn, suppressed TEAD2-dependent promoter activity, whereas siRNA-mediated knockdown of Nanog induced it, suggesting a negative regulatory feedback loop. Episomal supertransfection of cells with inhibitory TEAD2-EnR induced endodermal differentiation, which suggests that this pathway is necessary for ES cell maintenance.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR
Antibody

Share this article

Published
April, 2011

Source

Events

  • AACR 2024
    San Diego, California, USA
    Apr 5-Apr 10, 2024
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics