Diagenode

Nanog Overcomes Reprogramming Barriers and Induces pluripotency in minimal conditions.


Theunissen TW, van Oosten AL, Castelo-Branco G, Hall J, Smith A, Silva JCR

Induced pluripotency requires the expression of defined factors and culture conditions that support the self-renewal of embryonic stem (ES) cells [1]. Small molecule inhibition of MAP kinase (MEK) and glycogen synthase kinase 3 (GSK3) with LIF (2i/LIF) provides an optimal culture environment for mouse ES cells [2] and promotes transition to naive pluripotency in partially reprogrammed (pre-iPS) cells [3]. Here we show that 2i/LIF treatment in clonal lines of pre-iPS cells results in the activation of endogenous Nanog and rapid downregulation of retroviral Oct4 expression. Nanog enables somatic cell reprogramming in serum-free medium supplemented with LIF, a culture condition which does not support induced pluripotency or the self-renewal of ES cells, and is sufficient to reprogram epiblast-derived stem cells to naive pluripotency in serum-free medium alone. Nanog also enhances reprogramming in cooperation with kinase inhibition or 5- aza-cytidine, a small molecule inhibitor of DNA methylation. These results highlight the capacity of Nanog to overcome multiple barriers to reprogramming and reveal a synergy between Nanog and chemical inhibitors that promote reprogramming. We conclude that Nanog induces pluripotency in minimal conditions. This provides a strategy for imposing naive pluripotency in mammalian cells independently of species-specific culture requirements.

Share this article

Events

  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics