Diagenode

Acute Depletion Redefines the Division of Labor among DNA Methyltransferases in Methylating the Human Genome.


Tiedemann RL, Putiri EL, Lee JH, Hlady RA, Kashiwagi K, Ordog T, Zhang Z, Liu C, Choi JH, Robertson KD

Global patterns of DNA methylation, mediated by the DNA methyltransferases (DNMTs), are disrupted in all cancers by mechanisms that remain largely unknown, hampering their development as therapeutic targets. Combinatorial acute depletion of all DNMTs in a pluripotent human tumor cell line, followed by epigenome and transcriptome analysis, revealed DNMT functions in fine detail. DNMT3B occupancy regulates methylation during differentiation, whereas an unexpected interplay was discovered in which DNMT1 and DNMT3B antithetically regulate methylation and hydroxymethylation in gene bodies, a finding confirmed in other cell types. DNMT3B mediated non-CpG methylation, whereas DNMT3L influenced the activity of DNMT3B toward non-CpG versus CpG site methylation. Altogether, these data reveal functional targets of each DNMT, suggesting that isoform selective inhibition would be therapeutically advantageous.

Tags
Antibody
5mC (C15200081)

Share this article

Published
November, 2014

Source

Related product

  • RFX5-polyclonal-antibody-diagenode
    C15200081-100
    5-methylcytosine (5-mC) monoclonal antibody 33D...

Events

 See all events

Twitter feed

News

 See all news