Diagenode

>>>   Click for Diagenode’s approach to COVID-19

Long noncoding RNA modulates alternative splicing regulators in Arabidopsis.


Bardou F, Ariel F, Simpson CG, Romero-Barrios N, Laporte P, Balzergue S, Brown JW, Crespi M

Alternative splicing (AS) of pre-mRNA represents a major mechanism underlying increased transcriptome and proteome complexity. Here, we show that the nuclear speckle RNA-binding protein (NSR) and the AS competitor long noncoding RNA (or ASCO-lncRNA) constitute an AS regulatory module. AtNSR-GFP translational fusions are expressed in primary and lateral root (LR) meristems. Double Atnsr mutants and ASCO overexpressors exhibit an altered ability to form LRs after auxin treatment. Interestingly, auxin induces a major change in AS patterns of many genes, a response largely dependent on NSRs. RNA immunoprecipitation assays demonstrate that AtNSRs interact not only with their alternatively spliced mRNA targets but also with the ASCO-RNA in vivo. The ASCO-RNA displaces an AS target from an NSR-containing complex in vitro. Expression of ASCO-RNA in Arabidopsis affects the splicing patterns of several NSR-regulated mRNA targets. Hence, lncRNA can hijack nuclear AS regulators to modulate AS patterns during development.

Tags
IP-Star
IP-Star Compact

Share this article

Published
July, 2014

Source

Products used in this publication

  • Compact Automated System
    B03000002
    IP-Star® Compact Automated System

Events

  • DNA methylation workshop: Become an expert at RRBS
    Diagenode
    Oct 1-Oct 31, 2021
  • Dutch Chromatin Meeting
    Radboud UMC, Geert Grooteplein 15, 6525 EZ Nijmegen, The Netherlands, Experience center, route 292 to 307
    Nov 12, 2021
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.



  ABOUT SSL CERTIFICATES

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics