MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis

Ghosh T, Aprea J, Nardelli J, Engel H, Selinger C, Mombereau C, Lemonnier T, Moutkine I, Schwendimann L, Dori M, Irinopoulou T, Henrion-Caude A, Benecke AG, Arnold SJ, Gressens P, Calegari F, Groszer M

Over the course of cortical neurogenesis, the transi- tion of progenitors from proliferation to differentia- tion requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neuro- genesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regula- tion between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual suscepti- bilities for genetically complex neuropsychiatric disorders.

Chromatin Shearing

Share this article

June, 2014



 See all events

Twitter feed


 See all news