Diagenode

Inhibition of HDAC1 and DNMT1 modulate RGS10 expression and decrease ovarian cancer chemoresistance.


Cacan E, Ali MW, Boyd NH, Hooks SB, Greer SF

RGS10 is an important regulator of cell survival and chemoresistance in ovarian cancer. We recently showed that RGS10 transcript expression is suppressed during acquired chemoresistance in ovarian cancer. The suppression of RGS10 is due to DNA hypermethylation and histone deacetylation, two important mechanisms that contribute to silencing of tumor suppressor genes during cancer progression. Here, we fully investigate the molecular mechanisms of epigenetic silencing of RGS10 expression in chemoresistant A2780-AD ovarian cancer cells. We identify two important epigenetic regulators, HDAC1 and DNMT1, that exhibit aberrant association with RGS10 promoters in chemoresistant ovarian cancer cells. Knockdown of HDAC1 or DNMT1 expression, and pharmacological inhibition of DNMT or HDAC enzymatic activity, significantly increases RGS10 expression and cisplatin-mediated cell death. Finally, DNMT1 knock down also decreases HDAC1 binding to the RGS10 promoter in chemoresistant cells, suggesting HDAC1 recruitment to RGS10 promoters requires DNMT1 activity. Our results suggest that HDAC1 and DNMT1 contribute to the suppression of RGS10 during acquired chemoresistance and support inhibition of HDAC1 and DNMT1 as an adjuvant therapeutic approach to overcome ovarian cancer chemoresistance.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR

Share this article

Published
January, 2014

Source

Events

  • AACR 2024
    San Diego, California, USA
    Apr 5-Apr 10, 2024
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics