Diagenode

The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway.


Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY

The TGF-β/Smad3 pathway plays a major role in tissue fibrosis, but the precise mechanisms are not fully understood. Here we identified microRNA miR-433 as an important component of TGF-β/Smad3-driven renal fibrosis. The miR-433 was upregulated following unilateral ureteral obstruction, a model of aggressive renal fibrosis. In vitro, overexpression of miR-433 enhanced TGF-β1-induced fibrosis, whereas knockdown of miR-433 suppressed this response. Furthermore, Smad3, but not Smad2, bound to the miR-433 promoter to induce its expression. Delivery of an miR-433 knockdown plasmid to the kidney by ultrasound microbubble-mediated gene transfer suppressed the induction and progression of fibrosis in the obstruction model. The antizyme inhibitor Azin1, an important regulator of polyamine synthesis, was identified as a target of miR-433. Overexpression of miR-433 suppressed Azin1 expression, while, in turn, Azin1 overexpression suppressed TGF-β signaling and the fibrotic response. Thus, miR-433 is an important component of TGF-β/Smad3-induced renal fibrosis through the induction of a positive feedback loop to amplify TGF-β/Smad3 signaling, and may be a potential therapeutic target in tissue fibrosis.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR

Share this article

Published
December, 2013

Source

Events

  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
  • London Calling 2024
    London, UK
    May 21-May 24, 2024
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics