Diagenode

Suggestive linkage of familial mesial temporal lobe epilepsy to chromosome 3q26.


Fanciulli M, Di Bonaventura C, Egeo G, Fattouch J, Dazzo E, Radovic S, Spadotto A, Giallonardo AT, Nobile C

PURPOSE: To describe the clinical findings in a family with a benign form of mesial temporal lobe epilepsy and to identify the causative genetic factors. METHODS: All participants were personally interviewed and underwent neurologic examination. The affected subjects underwent EEG and most of them neuroradiological examinations (MRI). All family members were genotyped with the HumanCytoSNP-12 v1.0 beadchip and linkage analysis was performed with Merlin and Simwalk2 programs. Exome sequencing was performed on HiSeq2000, after exome capture with SureSelect 50Mb kit v2.0. RESULTS: The family had 6 members with temporal lobe epilepsy. Age at seizure onset ranged from 8 to 13 years. Five patients had epigastric auras often associated to oro-alimentary automatic activity, 3 patients presented loss of contact, and 2 experienced secondary generalizations. Febrile seizures occurred in 2 family members, 1 of whom also had temporal lobe epilepsy. EEG showed focal slow waves and epileptic abnormalities on temporal regions in 1 patient and was normal in the other affected individuals. MRI was normal in all temporal lobe epilepsy patients. We performed single nucleotide polymorphism-array linkage analysis of the family and found suggestive evidence of linkage (LOD score=2.106) to a region on chromosome 3q26. Haplotype reconstruction supported the linkage data and showed that the majority of unaffected family members carried the haplotype at risk. Whole exome sequencing failed to identify pathogenic mutations in genes of the candidate region. CONCLUSIONS: Our data suggest the existence of a novel locus for benign familial mesial temporal lobe epilepsy on chromosome 3q26. Our failure to identify pathogenic mutations in genes of this region may be due to limitations of the exome sequencing technology.

Tags
DNA shearing
Bioruptor

Share this article

Published
November, 2013

Source

Events

 See all events

Twitter feed

News

 See all news