Diagenode

Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7.


Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R

Sirtuins are NAD(+)-dependent protein deacetylases that connect metabolism and cellular homeostasis. Here we show that the nuclear Sirtuin SIRT7 targets PAF53, a subunit of RNA polymerase I (Pol I). Acetylation of PAF53 at lysine 373 by CBP and deacetylation by SIRT7 modulate the association of Pol I with DNA, hypoacetylation correlating with increased rDNA occupancy of Pol I and transcription activation. SIRT7 is released from nucleoli in response to different stress conditions, leading to hyperacetylation of PAF53 and decreased Pol I transcription. Nucleolar detention requires binding of SIRT7 to nascent pre-rRNA, linking the spatial distribution of SIRT7 and deacetylation of PAF53 to ongoing transcription. The results identify a nonhistone target of SIRT7 and uncover an RNA-mediated mechanism that adapts nucleolar transcription to stress signaling.

Share this article

Published
November, 2013

Source

Events

  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
  • London Calling 2024
    London, UK
    May 21-May 24, 2024
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics