Diagenode

Toxoplasma gondii inhibits IFN-γ- and IFN-β-induced host cell STAT1 transcriptional activity by increasing the association of STAT1 with DNA.


Rosowski EE, Nguyen QP, Camejo A, Spooner E, Saeij JP

The IFN-γ response, mediated by the STAT1 transcription factor, is crucial for host defense against the intracellular pathogen Toxoplasma gondii, but prior infection with Toxoplasma can inhibit this response. Recently it was reported that the Toxoplasma type II NTE strain prevents the recruitment of chromatin remodeling complexes containing Brahma related gene (BRG)-1to promoters of IFN-γ-induced secondary response genes such as Ciita and MHC class II genes in murine macrophages, thereby inhibiting their expression. Here we report that a type I strain of Toxoplasma inhibits the expression of primary IFN-γ response genes such as IRF1 through a distinct mechanism not dependent on the activity of histone deacetylases.Instead, infection with a type I, II, or III strain of Toxoplasma inhibits the dissociation of STAT1 from DNA, preventing its recycling and further rounds of STAT1-mediated transcriptional activation. This leads to increased IFN-γ-induced binding of STAT1 at the IRF1 promoter in host cells and increased global IFN-γ-induced association of STAT1 with chromatin. Toxoplasma type I infection also inhibits IFN-β-induced interferon-stimulated gene factor (ISGF) 3-mediated gene expression and this inhibition is also linked to increased association of STAT1 with chromatin. The secretion of proteins into the host cell by a type I strain of Toxoplasma without complete parasite invasion is not sufficient to block STAT1-mediated expression, suggesting that the effector protein responsible for this inhibition is not derived from the rhoptries.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR
IP-Star

Share this article

Published
November, 2013

Source

Related product

  • some alt
    B03000002
    IP-Star® Compact Automated System

Events

 See all events

Twitter feed

News

 See all news