Diagenode

Myc binds the pluripotency factor Utf1 through the basic-helix-loop-helix leucine zipper domain.


Laskowski AI, Knoepfler PS

In order to elucidate the function of Myc in the maintenance of pluripotency and self-renewal in mouse embryonic stem cells (mESCs), we screened for novel ESC-specific interactors of Myc by mass spectrometry. Undifferentiated embryonic cell transcription factor 1 (Utf1) was identified in the screen as a putative Myc binding protein in mESCs. We found that Myc and Utf1 directly interact. Utf1 is a chromatin-associated factor required for maintaining pluripotency and self-renewal in mESCs. It can also replace c-myc during induced pluripotent stem cell (iPSC) generation with relatively high efficiency, and shares target genes with Myc in mESCs highlighting a potentially redundant functional role between Myc and Utf1. A large region of Utf1 was found to be necessary for direct interaction with N-Myc, while the basic helix-loop-helix leucine zipper domain of N-Myc is necessary for direct interaction with Utf1.

Tags
Bioruptor
Cell Lysis
Western Blot

Share this article

Published
June, 2013

Source

Events

  • ASHG
    Houston, TX
    Oct 15-Oct 19, 2019
  • Neuroscience 2019
    Chicago, IL
    Oct 19-Oct 23, 2019
 See all events

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics