Diagenode

A new strategy for selective targeting of progesterone receptor with passive antagonists.


Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G, Amazit L, Brion JD, Alami M, Lombès M, Loosfelt H, Rafestin-Oblin ME

Currently available progesterone (P4) receptor (PR) antagonists, such as mifepristone (RU486), lack specificity and display partial agonist properties, leading to potential drawbacks in their clinical use. Recent x-ray crystallographic studies have identified key contacts involved in the binding of agonists and antagonists with PR opening the way for a new rational strategy for inactivating PR. We report here the synthesis and characterization of a novel class of PR antagonists (APRn) designed from such studies. The lead molecule, the homosteroid APR19, displays in vivo endometrial anti-P4 activity. APR19 inhibits P4-induced PR recruitment and transactivation from synthetic and endogenous gene promoters. Importantly, it exhibits high PR selectivity with respect to other steroid hormone receptors and is devoid of any partial agonist activity on PR target gene transcription. Two-hybrid and immunostaining experiments reveal that APR19-bound PR is unable to interact with either steroid receptor coactivators 1 and 2 (SRC1 and SCR2) or nuclear receptor corepressor (NcoR) and silencing mediator of retinoid acid and thyroid hormone receptor (SMRT), in contrast to RU486-PR complexes. APR19 also inhibits agonist-induced phosphorylation of serine 294 regulating PR transcriptional activity and turnover kinetics. In silico docking studies based on the crystal structure of the PR ligand-binding domain show that, in contrast to P4, APR19 does not establish stabilizing hydrogen bonds with the ligand-binding cavity, resulting in an unstable ligand-receptor complex. Altogether, these properties highly distinguish APR19 from RU486 and likely its derivatives, suggesting that it belongs to a new class of pure antiprogestins that inactivate PR by a passive mechanism. These specific PR antagonists open new perspectives for long-term hormonal therapy.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR
HighCell ChIP kit

Share this article

Published
June, 2013

Source

Events

  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
  • London Calling 2024
    London, UK
    May 21-May 24, 2024
 See all events

News

 See all news


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics