MagBisulfite kit

DNA methylation plays a critical role in the regulation of gene expression. It is known to be an essential mechanism for guiding normal cellular development and maintaining of tissue identities. DNA methylation is the first discovered epigenetic mark, and remains the most studied. In animals, it predominantly involves the addition of a methyl group to the carbon-5 position of cytosine residues of the dinucleotide CpG. Many techniques have been developed to analyze DNA methylation. These methods can be divided into three groups: (1) chemical modification with bisulfite, (2) affinity- based isolation of methylated DNA and (3) treatment with methylation-sensitive restriction enzymes. Of these, bisulfite modification of DNA is a method most frequently used. Treatment of DNA with bisulfite converts cytosine residues to uracil, but leaves 5-methylcytosine residues unaffected (Figure 1). Thus, bisulfite treatment introduces specific changes in the DNA sequence that depends on the methylation status of individual cytosine residues, yielding single nucleotide resolution information about the methylation status. Various analyses can be performed on the altered sequence to retrieve this information: bisulfite sequencing, methylation-specific PCR, high resolution melting curve analysis, microarray-based approaches, next-generation sequencing.


  • London Calling 2024
    London, UK
    May 21-May 24, 2024
  • Symposium of the Young Scientist Association
    Vienna, Austria
    May 28-May 29, 2024
  • ESHG 2024
    Berlin, Germany
    Jun 1-Jun 4, 2024
  • CLEPIC 2024
    Warsaw, Poland
    Jun 5-Jun 7, 2024
  • EACR 2024
    Rotterdam, Netherlands
    Jun 10-Jun 13, 2024
  • Chromatin meets South 2024
    Marseille, France
    Jun 13-Jun 14, 2024
 See all events


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics