Disruptive cell cycle regulation involving epigenetic downregulation of Cdkn2a (p16(Ink4a)) in early-stage liver tumor-promotion facilitating liver cell regeneration in rats.

Tsuchiya T, Wang L, Yafune A, Kimura M, Ohishi T, Suzuki K, Mitsumori K, Shibutani M

Cell cycle aberration was immunohistochemically examined in relation to preneoplastic liver cell foci expressing glutathione S-transferase placental form (GST-P) at early stages of tumor-promotion in rats with thioacetamide (TAA), a hepatocarcinogen facilitating liver cell regeneration. Immunoexpression of p16(Ink4a) following exposure to other hepatocarcinogens/promoters and its DNA methylation status were also analyzed during early and late tumor-promotion stages. GST-P(+) liver cell foci increased cell proliferation and decreased apoptosis when compared with surrounding liver cells. In concordance with GST-P(+) foci, checkpoint proteins at G(1)/S (p21(Cip1), p27(Kip1) and p16(Ink4a)) and G(2)/M (phospho-checkpoint kinase 1, Cdc25c and phospho-Wee1) were either up- or downregulated. Cellular distribution within GST-P(+) foci was either increased or decreased with proteins related to G(2)-M phase or DNA damage (topoisomerase IIα, phospho-histone H2AX, phospho-histone H3 and Cdc2). In particular, p16(Ink4a) typically downregulated in GST-P(+) foci and regenerative nodules at early tumor-promotion stage with hepatocarcinogens facilitating liver cell regeneration and in neoplastic lesions at late tumor-promotion stage with hepatocarcinogens/promoters irrespective of regenerating potential. Hypermethylation at exon 2 of Cdkn2a was detected at both early- and late-stages. Thus, diverse disruptive expression of G(1)/S and G(2)/M proteins, which allows for clonal selection of GST-P(+) foci, results in the acquisition of multiple aberrant phenotypes to disrupt checkpoint function. Moreover, increased DNA-damage responses within GST-P(+) foci may be the signature of genetic alterations. Intraexonic hypermethylation may be responsible for p16(Ink4a)-downregulation, which facilitates cell cycle progression in early preneoplastic lesions produced by repeated cell regeneration and late-stage neoplastic lesions irrespective of the carcinogenic mechanism.

DNA shearing
MeDIP kit

Share this article

May, 2012



 See all events


 See all news

The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics