Diagenode

Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming.


Liang G, He J, Zhang Y

Transcription-factor-directed reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) is by nature an epigenetic process of cell fate change. Previous studies have demonstrated that this inefficient process can be facilitated by the inclusion of additional factors. To gain insight into the reprogramming mechanism, we aimed to identify epigenetic enzymes capable of promoting iPSC generation. Here we show that Kdm2b, a histone H3 Lys 36 dimethyl (H3K36me2)-specific demethylase, has the capacity to promote iPSC generation. This capacity depends on its demethylase and DNA-binding activities, but is largely independent of its role in antagonizing senescence. Kdm2b functions at the beginning of the reprogramming process and enhances activation of early responsive genes in reprogramming. Kdm2b contributes to gene activation by binding to and demethylating the gene promoters. Our studies not only identify an important epigenetic factor for iPSC generation, but also reveal the molecular mechanism underlying how Kdm2b contributes to reprogramming.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR
Bioruptor Plus

Share this article

Published
May, 2012

Source

イベント

  • EpiChrom
    Umea Sweden
    Feb 27-Feb 28, 2020
 すべてのイベントを見る

ニュース

 すべてのニュースを見る


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.



  ABOUT SSL CERTIFICATES

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics