Diagenode

Targeting transthyretin by one Cas9 variant with superfidelity and broad compatibility


Qi, Sixian et al.

Amyloid transthyretin (ATTR) amyloidosis is a fatal disease caused by the accumulation of misfolded transthyretin proteins. Although knocking down the TTR gene by CRISPR-Cas9 represents a promising strategy for treating ATTR amyloidosis, its efficiency and safety remain to be further investigated. Here, we report a systematic investigation of SpCas9-based TTR editing. Besides the target site, wild-type SpCas9 and the reported variants induced extensive off-target edits. To improve the fidelity, we performed structural analysis and designed a series of SpCas9 variants. Studies demonstrated that SpCas9-Mut5 is an ultrahigh-fidelity variant, which induces extremely low levels of off-target edits and translocations without substantial impairment of on-target editing activity. SpCas9-Mut5 is compatible with the adenine base editor (ABE) system, markedly reducing off-target edits and narrowing the editing window. In conclusion, our study suggests that SpCas9-Mut5 is an excellent candidate for TTR gene editing. Besides ATTR amyloidosis, SpCas9-Mut5 and its derivative ABE could be widely used in the treatment of other diseases.

Share this article

Published
January, 2026

Source

Products used in this publication

  • Bioruptor Pico
    B01080010
    Picoruptor 2 sonication device

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy