Diagenode

Epigenetic inheritance of DNA methylation changes in fish living inhydrogen sulfide-rich springs.


Kelley J. et al.

Environmental factors can promote phenotypic variation through alterations in the epigenome and facilitate adaptation of an organism to the environment. Although hydrogen sulfide is toxic to most organisms, the fish has adapted to survive in environments with high levels that exceed toxicity thresholds by orders of magnitude. Epigenetic changes in response to this environmental stressor were examined by assessing DNA methylation alterations in red blood cells, which are nucleated in fish. Males and females were sampled from sulfidic and nonsulfidic natural environments; individuals were also propagated for two generations in a nonsulfidic laboratory environment. We compared epimutations between the sexes as well as field and laboratory populations. For both the wild-caught (F0) and the laboratory-reared (F2) fish, comparing the sulfidic and nonsulfidic populations revealed evidence for significant differential DNA methylation regions (DMRs). More importantly, there was over 80\% overlap in DMRs across generations, suggesting that the DMRs have stable generational inheritance in the absence of the sulfidic environment. This is an example of epigenetic generational stability after the removal of an environmental stressor. The DMR-associated genes were related to sulfur toxicity and metabolic processes. These findings suggest that adaptation of to sulfidic environments in southern Mexico may, in part, be promoted through epigenetic DNA methylation alterations that become stable and are inherited by subsequent generations independent of the environment.

Tags
Antibody

Share this article

Published
June, 2021

Source

Products used in this publication

  • Mouse IgG
    C15200006-100
    5-methylcytosine (5-mC) monoclonal antibody cl. b

イベント

  • EpiNantes 2024
    Nantes, France
    Sep 24-Sep 25, 2024
  • Nanopore Research Day Antwerp
    Antwerp, Belgium
    Sep 27, 2024
  • 10th Canadian Conference on Epigenetics
    Ontario, Canada
    Oct 1-Oct 4, 2024
 すべてのイベントを見る

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy