Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling.

Xia, Qiang-Ming and Miao, Lu-Ke and Xie, Kai-Dong and Yin, Zhao-Ping and Wu, Xiao-Meng and Chen, Chun-Li and Grosser, Jude W and Guo, Wen-Wu

KEY MESSAGE: The physical locations of citrus centromere are revealed by combining genetic and immunological assays for the first time and nine citrus centromere-specific markers for cytogenetics are mined. Centromere localization is challenging, because highly redundant repetitive sequences in centromeric regions make sequence assembly difficult. Although several citrus genomes have been released, the centromeric regions and their characteristics remain to be elucidated. Here, we mapped citrus centromeres through half-tetrad analysis (HTA) that included the genotyping of 54 tetraploid hybrids derived from 2n megagametophytes of Nadorcott tangor with 212 single nucleotide polymorphism (SNP) markers. The sizes of centromeric regions, which estimated based on the heterozygosity restitution rate pattern along the chromosomes, ranged from 1.12 to 18.19 Mb. We also profiled the binding sequences with the centromere-specific histone variant CenH3 by chromatin immunoprecipitation sequencing (ChIP-seq). Based on the positions of the top ten CenH3-enriched contigs, the sizes of centromeric regions were estimated to range from 0.01 to 7.60 Mb and were either adjacent to or included in the centromeric regions identified by HTA. We used DNA probes from two repeats selected from the centromeric regions and seven CenH3-binding centromeric repeats to verify centromeric locations by fluorescence in situ hybridization (FISH). Centromere localization in citrus will contribute to the mining of centromeric/pericentromeric markers, thus to facilitate the rapid identification of mechanisms underlying 2n gamete formation and serve the polyploidy breeding.

Share this article

December, 2020


Products used in this publication

  • ChIP kit icon
    Universal Plant ChIP-seq kit


  • Virtual ChIP workshop - January 18-19, 2022 or January 25-26, 2022
    Jan 18-Jan 26, 2022
  • Virtual DNA Methylation - January 18-19, 2022 or January 25-26, 2022
    Jan 18-Jan 26, 2022
  • Lausanne Genomics Days 2022
    Lausanne, Switzerland
    Feb 14-Feb 15, 2022



The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics