Diagenode

Stella regulates the Development of Female Germline Stem Cells byModulating Chromatin Structure and DNA Methylation.


Hou Changliang et al.

Female germline stem cells (FGSCs) have the ability to self-renew and differentiate into oocytes. , encoded by a maternal effect gene, plays an important role in oogenesis and early embryonic development. However, its function in FGSCs remains unclear. In this study, we showed that CRISPR/Cas9-mediated knockout of promoted FGSC proliferation and reduced the level of genome-wide DNA methylation of FGSCs. Conversely, overexpression led to the opposite results, and enhanced FGSC differentiation. We also performed an integrative analysis of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), high-throughput genome-wide chromosome conformation capture (Hi-C), and use of our published epigenetic data. Results indicated that the binding sites of STELLA and active histones H3K4me3 and H3K27ac were enriched near the TAD boundaries. Hi-C analysis showed that overexpression attenuated the interaction within TADs, and interestingly enhanced the TAD boundary strength in STELLA-associated regions. Taking these findings together, our study not only reveals the role of in regulating DNA methylation and chromatin structure, but also provides a better understanding of FGSC development.

Tags
MagMeDIP kit
Antibody

Share this article

Published
January, 2022

Source

Products used in this publication

  • MagMeDIP qPCR Kit box
    C02010021
    MagMeDIP qPCR kit
  • Mouse IgG
    C15200081-100
    5-methylcytosine (5-mC) monoclonal antibody 33D3

イベント

  • AACR 2024
    San Diego, California, USA
    Apr 5-Apr 10, 2024
 すべてのイベントを見る

ニュース

 すべてのニュースを見る


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics