The methylation pattern of DNA and complex correlations with gene expressions during TuMV infection in Chinese cabbage

J. YU , L.-W. GAO , Y. YANG , C. LIU , R.-J. ZHANG , F.-F. SUN , L.-X. SONG , D. XIAO , T.-K. LIU , X.-L. HOU , and C.-W. ZHANG

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important economic crops. However, its yield and quality can be severely threatened by Turnip mosaic virus (TuMV). Emerging evidence indicates that epigenetic mechanisms, especially DNA methylation, play an important role in regulating gene expression. Therefore, identification of resistance genes modified by DNA methylation during the virus infection would provide a critical clue for improving disease resistance breeding programs. Here, we present detailed analysis for the correlation of DNA methylation and gene expression involved in several anti-pathogen pathways. We also found that different methylation patterns exist in different methylation sites (CG, CHG, and CHH, where H represents A, G, or T) and genomic regions. Furthermore, we identified disease-resistant genes related to the nucleotide binding site-leucine-rich repeats family, auxin, salicylic acid signaling transduction, cell wall biosynthesis, and protein degradation among the different methylated genes (DMGs) suggesting that these genes may be modified by DNA methylation and work together to activate an immune response. The identified DMGs are a valuable resource for discovering resistance genes. Our study not only provides valuable data for future biotechnology research and epigenetic studies, but also helps to explore how the epigenetic mechanisms modify antiviral pathways.

MagMeDIP kit

Share this article

May, 2019


Products used in this publication

  • MagMeDIP qPCR Kit box
    MagMeDIP qPCR kit



The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics