Single-base methylome profiling of the giant kelp Saccharina japonica reveals significant differences in DNA methylation to microalgae and plants.

Fan X, Han W, Teng L, Jiang P, Zhang X, Xu D, Li C, Pellegrini M, Wu C, Wang Y, Kaczurowski MJS, Lin X, Tirichine L, Mock T, Ye N

Brown algae have convergently evolved plant-like body plans and reproductive cycles, which in plants are controlled by differential DNA methylation. Here we provide the first single-base methylome profiles of haploid gametophytes and diploid sporophytes of a multicellular alga. Although only c. 1.4% of cytosines in Saccharina japonica were methylated mainly at CHH sites and characterised by 5-methylcytosine (5mC), there were significant differences between life-cycle stages. DNA methyltransferase 2 (DNMT2), known to efficiently catalyze tRNA methylation, is assumed to methylate the genome of S. japonica in the structural context of tRNAs as the genome does not encode any other DNA methyltransferases. Circular and long non-coding RNA genes were the most strongly methylated regulatory elements in S. japonica. Differential expression of genes was negatively correlated with DNA methylation with the highest methylation levels measured in both haploid gametophytes. Hypomethylated and highly expressed genes in diploid sporophytes included genes involved in morphogenesis and halogen metabolism. Our data give evidence that cytosine methylation, although occurring at a low level, is significantly contributing to the formation of different life-cycle stages, tissue differentiation, and metabolism in brown algae.

MagMeDIP kit

Share this article

August, 2019


Products used in this publication

  • MagMeDIP qPCR Kit box
    MagMeDIP qPCR kit



The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics