Diagenode

Longitudinal Effects of Developmental Bisphenol A Exposure on Epigenome-Wide DNA Hydroxymethylation at Imprinted Loci in Mouse Blood.


Kochmanski JJ, Marchlewicz EH, Cavalcante RG, Perera BPU, Sartor MA, Dolinoy DC

BACKGROUND: Epigenetic machinery plays an important role in genomic imprinting, a developmental process that establishes parent-of-origin-specific monoallelic gene expression. Although a number of studies have investigated the role of 5-methylcytosine in imprinting control, the contribution of 5-hydroxymethylcytosine (5-hmC) to this epigenetic phenomenon remains unclear. OBJECTIVES: Using matched mouse blood samples (from mice at 2, 4, and 10 months of age), our objective was to examine the effects of perinatal bisphenol A (BPA) exposure (50 μg/kg diet) on longitudinal 5-hmC patterns at imprinted regions. We also aimed to test the hypothesis that 5-hmC would show defined patterns at imprinted genes that persist across the life course. METHODS: Genome-wide 5-hmC levels were measured using hydroxymethylated DNA immunoprecipitation sequencing (HMeDIP-seq). Modeling of differential hydroxymethylation by BPA exposure was performed using a pipeline of bioinformatics tools, including the R package. RESULTS: Based on BPA exposure, we identified 5,950 differentially hydroxymethylated regions (DHMRs), including 12 DHMRs that were annotated to murine imprinted genes—, , , , , , , , , , and . When visualized, these imprinted gene DHMRs showed clear, consistent patterns of differential 5-hmC by developmental BPA exposure that persisted throughout adulthood. CONCLUSIONS: These data show long-term establishment of 5-hmC marks at imprinted loci during development. Further, the effect of perinatal BPA exposure on 5-hmC at specific imprinted loci indicates that developmental exposure to environmental toxicants may alter long-term imprinted gene regulation via an epigenetic mechanism. https://doi.org/10.1289/EHP3441.

Share this article

Published
July, 2018

Source

Products used in this publication

  • default alt
    C02040011
    5-hmC, 5-mC & cytosine DNA standard pack for hM...

イベント

  • Japanese Biochemical Society
    Yokohama
    Sep 18-Sep 20, 2019
  • The 2019 PacBio Long-Read Revolution: Highly Accurate and Affordable SMRT Sequencing
    Atlanta, Georgia
    Sep 19, 2019
  • The 2019 PacBio Long-Read Revolution: Highly Accurate and Affordable SMRT Sequencing
    RTP, North Carolina
    Sep 20, 2019
  • EpiGeneSys
    London
    Sep 22-Sep 24, 2019
 すべてのイベントを見る

         Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics