>>>   Click for Diagenode’s approach to COVID-19

Essential role of the iron-sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation.

Liu L, Huang M

DNA primase catalyzes de novo synthesis of a short RNA primer that is further extended by replicative DNA polymerases during initiation of DNA replication. The eukaryotic primase is a heterodimeric enzyme comprising a catalytic subunit Pri1 and a regulatory subunit Pri2. Pri2 is responsible for facilitating optimal RNA primer synthesis by Pri1 and mediating interaction between Pri1 and DNA polymerase α for transition from RNA synthesis to DNA elongation. All eukaryotic Pri2 proteins contain a conserved C-terminal iron-sulfur (Fe-S) cluster-binding domain that is critical for primase catalytic activity in vitro. Here we show that mutations at conserved cysteine ligands for the Pri2 Fe-S cluster markedly decrease the protein stability, thereby causing S phase arrest at the restrictive temperature. Furthermore, Pri2 cysteine mutants are defective in loading of the entire DNA pol α-primase complex onto early replication origins resulting in defective initiation. Importantly, assembly of the Fe-S cluster in Pri2 is impaired not only by mutations at the conserved cysteine ligands but also by increased oxidative stress in the sod1Δ mutant lacking the Cu/Zn superoxide dismutase. Together these findings highlight the critical role of Pri2's Fe-S cluster domain in replication initiation in vivo and suggest a molecular basis for how DNA replication can be influenced by changes in cellular redox state.

Chromatin Shearing

Share this article

March, 2015




The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics