Enriched domain detector: a program for detection of wide genomic enrichment domains robust against local variations.
Lund E, Oldenburg AR, Collas P
Nuclear lamins contact the genome at the nuclear periphery through large domains and are involved in chromatin organization. Among broad peak calling algorithms available to date, none are suited for mapping lamin-genome interactions genome wide. We disclose a novel algorithm, enriched domain detector (EDD), for analysis of broad enrichment domains from chromatin immunoprecipitation (ChIP)-seq data. EDD enables discovery of genomic domains interacting with broadly distributed proteins, such as A- and B-type lamins affinity isolated by ChIP. The advantages of EDD over existing broad peak callers are sensitivity to domain width rather than enrichment strength at a particular site, and robustness against local variations.
To ensure you see the information most relevant to you, please select your country.
Please note that your browser will need to be configured to accept cookies.
Diagenode will process your personal data in strict accordance with its privacy policy. This will include sending you updates about us, our products, and resources we think would be of interest to you.