Diagenode

De novo assembly and delivery of synthetic megabase-scale human DNA into mouse early embryos


Liu, Yue et al.

Epigenetic modifications on natural chromosomes are inherited and maintained in a default state, making it challenging to remove intrinsic marks to study the fundamental principles of their establishment and further influence on transcriptional regulation. In this study, we developed SynNICE, a method for assembling and delivering intact, naive, synthetic megabase (Mb)-scale human DNA into early mouse embryos, to study de novo epigenetic regulation. By assembling and delivering a 1.14-Mb human AZFa (hAZFa) locus, we observed the spontaneous incorporation of murine histones and the establishment of DNA methylation at the one-cell stage. Notably, DNA methylation from scratch strongly enriches at repeat sequences without H3K9me3 reinforcement. Furthermore, the transcription of hAZFa initiated at the four-cell stage is regulated by newly established DNA methylation. This method provides a unique platform for exploring de novo epigenomic regulation mechanisms in higher animals.

Tags
Antibody

Share this article

Published
August, 2025

Source

Products used in this publication

  • Mouse IgG
    C15200081-100
    5-methylcytosine (5-mC) Antibody - clone 33D3

活动

  • 20th Annual Biomarkers & Precision Medicine Congress
    London, UK
    Sep 30-Oct 1, 2025
 查看所有活动

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy