Diagenode

Methionine Metabolism Controls the B-cell EBV Epigenome andViral Latency


Guo R. et al.

Epstein-Barr virus (EBV) subverts host epigenetic pathways to switch between viral latency programs, colonize the B-cell compartment and reactivate. Within memory B-cells, the reservoir for lifelong infection, EBV genomic DNA and histone methylation marks restrict gene expression. But, this epigenetic strategy also enables EBV-infected tumors, including Burkitt lymphomas to evade immune detection. Little is known about host cell metabolic pathways that support EBV epigenome landscapes. We therefore used amino acid restriction, metabolomic and CRISPR approaches to identify that an abundant methionine supply, and interconnecting methionine and folate cycles, maintain Burkitt EBV gene silencing. Methionine restriction, or methionine cycle perturbation, hypomethylated EBV genomes, de-repressed latent membrane protein and lytic gene expression. Methionine metabolism also shaped EBV latency gene regulation required for B-cell immortalization. Dietary methionine restriction altered murine Burkitt xenograft metabolomes and de-repressed EBV immunogens in vivo. These results highlight epigenetic/immunometabolism crosstalk supporting the EBV B-cell lifecycle and suggest therapeutic approaches.

Tags
MagMeDIP qPCR Kit

Share this article

Published
February, 2022

Source

Products used in this publication

  • MagMeDIP qPCR Kit box
    C02010021
    MagMeDIP qPCR Kit

活动

  • AACR 2024
    San Diego, California, USA
    Apr 5-Apr 10, 2024
 查看所有活动

新闻

 查看所有新闻


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics