Diagenode

Epigenetic silencing mediated through activated PI3K/AKT signaling in breast cancer.


Zuo T, Liu TM, Lan X, Weng YI, Shen R, Gu F, Huang YW, Liyanarachchi S, Deatherage DE, Hsu PY, Taslim C, Ramaswamy B, Shapiro CL, Lin HJ, Cheng AS, Jin VX, Huang TH

Trimethylation of histone 3 lysine 27 (H3K27me3) is a critical epigenetic mark for the maintenance of gene silencing. Additional accumulation of DNA methylation in target loci is thought to cooperatively support this epigenetic silencing during tumorigenesis. However, molecular mechanisms underlying the complex interplay between the two marks remain to be explored. Here we show that activation of PI3K/AKT signaling can be a trigger of this epigenetic processing at many downstream target genes. We also find that DNA methylation can be acquired at the same loci in cancer cells, thereby reinforcing permanent repression in those losing the H3K27me3 mark. Because of a link between PI3K/AKT signaling and epigenetic alterations, we conducted epigenetic therapies in conjunction with the signaling-targeted treatment. These combined treatments synergistically relieve gene silencing and suppress cancer cell growth in vitro and in xenografts. The new finding has important implications for improving targeted cancer therapies in the future.

Tags
Antibody
5mC (C15200081)

Share this article

Published
March, 2011

Source

Products used in this publication

  • Mouse IgG
    C15200081-100
    5-methylcytosine (5-mC) Antibody - clone 33D3

活动

  • APHL 2024
    Milwaukee, Wisconsin, USA
    May 6-May 9, 2024
 查看所有活动

新闻

 查看所有新闻


The European Regional Development Fund and Wallonia are investing in your future.

Extension of industrial buildings and new laboratories.


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics