Diagenode

Differential DNA methylation of potassium channel KCa3.1 and immune signalling pathways is associated with infant immune responses following BCG vaccination.


Hasso-Agopsowicz M, Scriba TJ, Hanekom WA, Dockrell HM, Smith SG

Bacillus Calmette-Guérin (BCG) is the only licensed vaccine for tuberculosis (TB) and induces highly variable protection against pulmonary disease in different countries. We hypothesised that DNA methylation is one of the molecular mechanisms driving variability in BCG-induced immune responses. DNA methylation in peripheral blood mononuclear cells (PBMC) from BCG vaccinated infants was measured and comparisons made between low and high BCG-specific cytokine responders. We found 318 genes and 67 pathways with distinct patterns of DNA methylation, including immune pathways, e.g. for T cell activation, that are known to directly affect immune responses. We also highlight signalling pathways that could indirectly affect the BCG-induced immune response: potassium and calcium channel, muscarinic acetylcholine receptor, G Protein coupled receptor (GPCR), glutamate signalling and WNT pathways. This study suggests that in addition to immune pathways, cellular processes drive vaccine-induced immune responses. Our results highlight mechanisms that require consideration when designing new TB vaccines.

Share this article

Published
August, 2018

Source

Products used in this publication

  • Methylation kit icon
    C02030036
    Premium RRBS kit V2
  • Methylation kit icon
    C02030037
    Premium RRBS kit V2 x96 RRBS for low DNA amoun...

活动

  • EpiNantes 2024
    Nantes, France
    Sep 24-Sep 25, 2024
  • Nanopore Research Day Antwerp
    Antwerp, Belgium
    Sep 27, 2024
  • 10th Canadian Conference on Epigenetics
    Ontario, Canada
    Oct 1-Oct 4, 2024
 查看所有活动

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy