A high-resolution imaging approach to investigate chromatin architecture in complex tissues

Linhoff MW, Garg SK, Mandel G

We present ChromATin, a quantitative high-resolution imaging approach for investigating chromatin organization in complex tissues. This method combines analysis of epigenetic modifications by immunostaining, localization of specific DNA sequences by FISH, and high-resolution segregation of nuclear compartments using array tomography (AT) imaging. We then apply this approach to examine how the genome is organized in the mammalian brain using female Rett syndrome mice, which are a mosaic of normal and Mecp2-null cells. Side-by-side comparisons within the same field reveal distinct heterochromatin territories in wild-type neurons that are altered in Mecp2-null nuclei. Mutant neurons exhibit increased chromatin compaction and a striking redistribution of the H4K20me3 histone modification into pericentromeric heterochromatin, a territory occupied normally by MeCP2. These events are not observed in every neuronal cell type, highlighting ChromATin as a powerful in situ method for examining cell-type-specific differences in chromatin architecture in complex tissues.


Share this article

September, 2015


Products used in this publication

  • ChIP-seq Grade
    H3K9me3 monoclonal antibody


  • FASEB Biological Methylation: Fundamental Mechanisms
    Porto, Portugal
    Jul 28-Aug 1, 2024


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy